3.4.83 \(\int \frac {x \sqrt {1-c^2 x^2}}{(a+b \text {ArcSin}(c x))^2} \, dx\) [383]

Optimal. Leaf size=150 \[ -\frac {x \left (1-c^2 x^2\right )}{b c (a+b \text {ArcSin}(c x))}+\frac {\cos \left (\frac {a}{b}\right ) \text {CosIntegral}\left (\frac {a+b \text {ArcSin}(c x)}{b}\right )}{4 b^2 c^2}+\frac {3 \cos \left (\frac {3 a}{b}\right ) \text {CosIntegral}\left (\frac {3 (a+b \text {ArcSin}(c x))}{b}\right )}{4 b^2 c^2}+\frac {\sin \left (\frac {a}{b}\right ) \text {Si}\left (\frac {a+b \text {ArcSin}(c x)}{b}\right )}{4 b^2 c^2}+\frac {3 \sin \left (\frac {3 a}{b}\right ) \text {Si}\left (\frac {3 (a+b \text {ArcSin}(c x))}{b}\right )}{4 b^2 c^2} \]

[Out]

-x*(-c^2*x^2+1)/b/c/(a+b*arcsin(c*x))+1/4*Ci((a+b*arcsin(c*x))/b)*cos(a/b)/b^2/c^2+3/4*Ci(3*(a+b*arcsin(c*x))/
b)*cos(3*a/b)/b^2/c^2+1/4*Si((a+b*arcsin(c*x))/b)*sin(a/b)/b^2/c^2+3/4*Si(3*(a+b*arcsin(c*x))/b)*sin(3*a/b)/b^
2/c^2

________________________________________________________________________________________

Rubi [A]
time = 0.25, antiderivative size = 150, normalized size of antiderivative = 1.00, number of steps used = 14, number of rules used = 7, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.269, Rules used = {4799, 4719, 3384, 3380, 3383, 4731, 4491} \begin {gather*} \frac {\cos \left (\frac {a}{b}\right ) \text {CosIntegral}\left (\frac {a+b \text {ArcSin}(c x)}{b}\right )}{4 b^2 c^2}+\frac {3 \cos \left (\frac {3 a}{b}\right ) \text {CosIntegral}\left (\frac {3 (a+b \text {ArcSin}(c x))}{b}\right )}{4 b^2 c^2}+\frac {\sin \left (\frac {a}{b}\right ) \text {Si}\left (\frac {a+b \text {ArcSin}(c x)}{b}\right )}{4 b^2 c^2}+\frac {3 \sin \left (\frac {3 a}{b}\right ) \text {Si}\left (\frac {3 (a+b \text {ArcSin}(c x))}{b}\right )}{4 b^2 c^2}-\frac {x \left (1-c^2 x^2\right )}{b c (a+b \text {ArcSin}(c x))} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(x*Sqrt[1 - c^2*x^2])/(a + b*ArcSin[c*x])^2,x]

[Out]

-((x*(1 - c^2*x^2))/(b*c*(a + b*ArcSin[c*x]))) + (Cos[a/b]*CosIntegral[(a + b*ArcSin[c*x])/b])/(4*b^2*c^2) + (
3*Cos[(3*a)/b]*CosIntegral[(3*(a + b*ArcSin[c*x]))/b])/(4*b^2*c^2) + (Sin[a/b]*SinIntegral[(a + b*ArcSin[c*x])
/b])/(4*b^2*c^2) + (3*Sin[(3*a)/b]*SinIntegral[(3*(a + b*ArcSin[c*x]))/b])/(4*b^2*c^2)

Rule 3380

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[SinIntegral[e + f*x]/d, x] /; FreeQ[{c, d,
 e, f}, x] && EqQ[d*e - c*f, 0]

Rule 3383

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CosIntegral[e - Pi/2 + f*x]/d, x] /; FreeQ
[{c, d, e, f}, x] && EqQ[d*(e - Pi/2) - c*f, 0]

Rule 3384

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[c*(f/d) + f*x]
/(c + d*x), x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[c*(f/d) + f*x]/(c + d*x), x], x] /; FreeQ[{c, d, e, f},
x] && NeQ[d*e - c*f, 0]

Rule 4491

Int[Cos[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sin[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Int[E
xpandTrigReduce[(c + d*x)^m, Sin[a + b*x]^n*Cos[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0]
&& IGtQ[p, 0]

Rule 4719

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[1/(b*c), Subst[Int[x^n*Cos[-a/b + x/b], x], x,
a + b*ArcSin[c*x]], x] /; FreeQ[{a, b, c, n}, x]

Rule 4731

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Dist[1/(b*c^(m + 1)), Subst[Int[x^n*Sin[-
a/b + x/b]^m*Cos[-a/b + x/b], x], x, a + b*ArcSin[c*x]], x] /; FreeQ[{a, b, c, n}, x] && IGtQ[m, 0]

Rule 4799

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[
(f*x)^m*Sqrt[1 - c^2*x^2]*(d + e*x^2)^p*((a + b*ArcSin[c*x])^(n + 1)/(b*c*(n + 1))), x] + (-Dist[f*(m/(b*c*(n
+ 1)))*Simp[(d + e*x^2)^p/(1 - c^2*x^2)^p], Int[(f*x)^(m - 1)*(1 - c^2*x^2)^(p - 1/2)*(a + b*ArcSin[c*x])^(n +
 1), x], x] + Dist[c*((m + 2*p + 1)/(b*f*(n + 1)))*Simp[(d + e*x^2)^p/(1 - c^2*x^2)^p], Int[(f*x)^(m + 1)*(1 -
 c^2*x^2)^(p - 1/2)*(a + b*ArcSin[c*x])^(n + 1), x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[c^2*d + e, 0]
&& LtQ[n, -1] && IGtQ[2*p, 0] && NeQ[m + 2*p + 1, 0] && IGtQ[m, -3]

Rubi steps

\begin {align*} \int \frac {x \sqrt {1-c^2 x^2}}{\left (a+b \sin ^{-1}(c x)\right )^2} \, dx &=-\frac {x \left (1-c^2 x^2\right )}{b c \left (a+b \sin ^{-1}(c x)\right )}+\frac {\int \frac {1}{a+b \sin ^{-1}(c x)} \, dx}{b c}-\frac {(3 c) \int \frac {x^2}{a+b \sin ^{-1}(c x)} \, dx}{b}\\ &=-\frac {x \left (1-c^2 x^2\right )}{b c \left (a+b \sin ^{-1}(c x)\right )}+\frac {\text {Subst}\left (\int \frac {\cos \left (\frac {a}{b}-\frac {x}{b}\right )}{x} \, dx,x,a+b \sin ^{-1}(c x)\right )}{b^2 c^2}-\frac {3 \text {Subst}\left (\int \frac {\cos (x) \sin ^2(x)}{a+b x} \, dx,x,\sin ^{-1}(c x)\right )}{b c^2}\\ &=-\frac {x \left (1-c^2 x^2\right )}{b c \left (a+b \sin ^{-1}(c x)\right )}-\frac {3 \text {Subst}\left (\int \left (\frac {\cos (x)}{4 (a+b x)}-\frac {\cos (3 x)}{4 (a+b x)}\right ) \, dx,x,\sin ^{-1}(c x)\right )}{b c^2}+\frac {\cos \left (\frac {a}{b}\right ) \text {Subst}\left (\int \frac {\cos \left (\frac {x}{b}\right )}{x} \, dx,x,a+b \sin ^{-1}(c x)\right )}{b^2 c^2}+\frac {\sin \left (\frac {a}{b}\right ) \text {Subst}\left (\int \frac {\sin \left (\frac {x}{b}\right )}{x} \, dx,x,a+b \sin ^{-1}(c x)\right )}{b^2 c^2}\\ &=-\frac {x \left (1-c^2 x^2\right )}{b c \left (a+b \sin ^{-1}(c x)\right )}+\frac {\cos \left (\frac {a}{b}\right ) \text {Ci}\left (\frac {a+b \sin ^{-1}(c x)}{b}\right )}{b^2 c^2}+\frac {\sin \left (\frac {a}{b}\right ) \text {Si}\left (\frac {a+b \sin ^{-1}(c x)}{b}\right )}{b^2 c^2}-\frac {3 \text {Subst}\left (\int \frac {\cos (x)}{a+b x} \, dx,x,\sin ^{-1}(c x)\right )}{4 b c^2}+\frac {3 \text {Subst}\left (\int \frac {\cos (3 x)}{a+b x} \, dx,x,\sin ^{-1}(c x)\right )}{4 b c^2}\\ &=-\frac {x \left (1-c^2 x^2\right )}{b c \left (a+b \sin ^{-1}(c x)\right )}+\frac {\cos \left (\frac {a}{b}\right ) \text {Ci}\left (\frac {a+b \sin ^{-1}(c x)}{b}\right )}{b^2 c^2}+\frac {\sin \left (\frac {a}{b}\right ) \text {Si}\left (\frac {a+b \sin ^{-1}(c x)}{b}\right )}{b^2 c^2}-\frac {\left (3 \cos \left (\frac {a}{b}\right )\right ) \text {Subst}\left (\int \frac {\cos \left (\frac {a}{b}+x\right )}{a+b x} \, dx,x,\sin ^{-1}(c x)\right )}{4 b c^2}+\frac {\left (3 \cos \left (\frac {3 a}{b}\right )\right ) \text {Subst}\left (\int \frac {\cos \left (\frac {3 a}{b}+3 x\right )}{a+b x} \, dx,x,\sin ^{-1}(c x)\right )}{4 b c^2}-\frac {\left (3 \sin \left (\frac {a}{b}\right )\right ) \text {Subst}\left (\int \frac {\sin \left (\frac {a}{b}+x\right )}{a+b x} \, dx,x,\sin ^{-1}(c x)\right )}{4 b c^2}+\frac {\left (3 \sin \left (\frac {3 a}{b}\right )\right ) \text {Subst}\left (\int \frac {\sin \left (\frac {3 a}{b}+3 x\right )}{a+b x} \, dx,x,\sin ^{-1}(c x)\right )}{4 b c^2}\\ &=-\frac {x \left (1-c^2 x^2\right )}{b c \left (a+b \sin ^{-1}(c x)\right )}-\frac {3 \cos \left (\frac {a}{b}\right ) \text {Ci}\left (\frac {a}{b}+\sin ^{-1}(c x)\right )}{4 b^2 c^2}+\frac {3 \cos \left (\frac {3 a}{b}\right ) \text {Ci}\left (\frac {3 a}{b}+3 \sin ^{-1}(c x)\right )}{4 b^2 c^2}+\frac {\cos \left (\frac {a}{b}\right ) \text {Ci}\left (\frac {a+b \sin ^{-1}(c x)}{b}\right )}{b^2 c^2}-\frac {3 \sin \left (\frac {a}{b}\right ) \text {Si}\left (\frac {a}{b}+\sin ^{-1}(c x)\right )}{4 b^2 c^2}+\frac {3 \sin \left (\frac {3 a}{b}\right ) \text {Si}\left (\frac {3 a}{b}+3 \sin ^{-1}(c x)\right )}{4 b^2 c^2}+\frac {\sin \left (\frac {a}{b}\right ) \text {Si}\left (\frac {a+b \sin ^{-1}(c x)}{b}\right )}{b^2 c^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.21, size = 125, normalized size = 0.83 \begin {gather*} \frac {-\frac {4 b c x}{a+b \text {ArcSin}(c x)}+\frac {4 b c^3 x^3}{a+b \text {ArcSin}(c x)}+\cos \left (\frac {a}{b}\right ) \text {CosIntegral}\left (\frac {a}{b}+\text {ArcSin}(c x)\right )+3 \cos \left (\frac {3 a}{b}\right ) \text {CosIntegral}\left (3 \left (\frac {a}{b}+\text {ArcSin}(c x)\right )\right )+\sin \left (\frac {a}{b}\right ) \text {Si}\left (\frac {a}{b}+\text {ArcSin}(c x)\right )+3 \sin \left (\frac {3 a}{b}\right ) \text {Si}\left (3 \left (\frac {a}{b}+\text {ArcSin}(c x)\right )\right )}{4 b^2 c^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(x*Sqrt[1 - c^2*x^2])/(a + b*ArcSin[c*x])^2,x]

[Out]

((-4*b*c*x)/(a + b*ArcSin[c*x]) + (4*b*c^3*x^3)/(a + b*ArcSin[c*x]) + Cos[a/b]*CosIntegral[a/b + ArcSin[c*x]]
+ 3*Cos[(3*a)/b]*CosIntegral[3*(a/b + ArcSin[c*x])] + Sin[a/b]*SinIntegral[a/b + ArcSin[c*x]] + 3*Sin[(3*a)/b]
*SinIntegral[3*(a/b + ArcSin[c*x])])/(4*b^2*c^2)

________________________________________________________________________________________

Maple [A]
time = 0.09, size = 223, normalized size = 1.49

method result size
default \(\frac {\arcsin \left (c x \right ) \cosineIntegral \left (\arcsin \left (c x \right )+\frac {a}{b}\right ) \cos \left (\frac {a}{b}\right ) b +3 \arcsin \left (c x \right ) \sinIntegral \left (3 \arcsin \left (c x \right )+\frac {3 a}{b}\right ) \sin \left (\frac {3 a}{b}\right ) b +3 \arcsin \left (c x \right ) \cosineIntegral \left (3 \arcsin \left (c x \right )+\frac {3 a}{b}\right ) \cos \left (\frac {3 a}{b}\right ) b +\arcsin \left (c x \right ) \sinIntegral \left (\arcsin \left (c x \right )+\frac {a}{b}\right ) \sin \left (\frac {a}{b}\right ) b +\cosineIntegral \left (\arcsin \left (c x \right )+\frac {a}{b}\right ) \cos \left (\frac {a}{b}\right ) a +3 \sinIntegral \left (3 \arcsin \left (c x \right )+\frac {3 a}{b}\right ) \sin \left (\frac {3 a}{b}\right ) a +3 \cosineIntegral \left (3 \arcsin \left (c x \right )+\frac {3 a}{b}\right ) \cos \left (\frac {3 a}{b}\right ) a +\sinIntegral \left (\arcsin \left (c x \right )+\frac {a}{b}\right ) \sin \left (\frac {a}{b}\right ) a -x b c -\sin \left (3 \arcsin \left (c x \right )\right ) b}{4 c^{2} \left (a +b \arcsin \left (c x \right )\right ) b^{2}}\) \(223\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(-c^2*x^2+1)^(1/2)/(a+b*arcsin(c*x))^2,x,method=_RETURNVERBOSE)

[Out]

1/4/c^2*(arcsin(c*x)*Ci(arcsin(c*x)+a/b)*cos(a/b)*b+3*arcsin(c*x)*Si(3*arcsin(c*x)+3*a/b)*sin(3*a/b)*b+3*arcsi
n(c*x)*Ci(3*arcsin(c*x)+3*a/b)*cos(3*a/b)*b+arcsin(c*x)*Si(arcsin(c*x)+a/b)*sin(a/b)*b+Ci(arcsin(c*x)+a/b)*cos
(a/b)*a+3*Si(3*arcsin(c*x)+3*a/b)*sin(3*a/b)*a+3*Ci(3*arcsin(c*x)+3*a/b)*cos(3*a/b)*a+Si(arcsin(c*x)+a/b)*sin(
a/b)*a-x*b*c-sin(3*arcsin(c*x))*b)/(a+b*arcsin(c*x))/b^2

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(-c^2*x^2+1)^(1/2)/(a+b*arcsin(c*x))^2,x, algorithm="maxima")

[Out]

(c^2*x^3 - (b^2*c*arctan2(c*x, sqrt(c*x + 1)*sqrt(-c*x + 1)) + a*b*c)*integrate((3*c^2*x^2 - 1)/(b^2*c*arctan2
(c*x, sqrt(c*x + 1)*sqrt(-c*x + 1)) + a*b*c), x) - x)/(b^2*c*arctan2(c*x, sqrt(c*x + 1)*sqrt(-c*x + 1)) + a*b*
c)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(-c^2*x^2+1)^(1/2)/(a+b*arcsin(c*x))^2,x, algorithm="fricas")

[Out]

integral(sqrt(-c^2*x^2 + 1)*x/(b^2*arcsin(c*x)^2 + 2*a*b*arcsin(c*x) + a^2), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x \sqrt {- \left (c x - 1\right ) \left (c x + 1\right )}}{\left (a + b \operatorname {asin}{\left (c x \right )}\right )^{2}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(-c**2*x**2+1)**(1/2)/(a+b*asin(c*x))**2,x)

[Out]

Integral(x*sqrt(-(c*x - 1)*(c*x + 1))/(a + b*asin(c*x))**2, x)

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 608 vs. \(2 (140) = 280\).
time = 0.49, size = 608, normalized size = 4.05 \begin {gather*} \frac {3 \, b \arcsin \left (c x\right ) \cos \left (\frac {a}{b}\right )^{3} \operatorname {Ci}\left (\frac {3 \, a}{b} + 3 \, \arcsin \left (c x\right )\right )}{b^{3} c^{2} \arcsin \left (c x\right ) + a b^{2} c^{2}} + \frac {3 \, b \arcsin \left (c x\right ) \cos \left (\frac {a}{b}\right )^{2} \sin \left (\frac {a}{b}\right ) \operatorname {Si}\left (\frac {3 \, a}{b} + 3 \, \arcsin \left (c x\right )\right )}{b^{3} c^{2} \arcsin \left (c x\right ) + a b^{2} c^{2}} + \frac {3 \, a \cos \left (\frac {a}{b}\right )^{3} \operatorname {Ci}\left (\frac {3 \, a}{b} + 3 \, \arcsin \left (c x\right )\right )}{b^{3} c^{2} \arcsin \left (c x\right ) + a b^{2} c^{2}} + \frac {3 \, a \cos \left (\frac {a}{b}\right )^{2} \sin \left (\frac {a}{b}\right ) \operatorname {Si}\left (\frac {3 \, a}{b} + 3 \, \arcsin \left (c x\right )\right )}{b^{3} c^{2} \arcsin \left (c x\right ) + a b^{2} c^{2}} + \frac {{\left (c^{2} x^{2} - 1\right )} b c x}{b^{3} c^{2} \arcsin \left (c x\right ) + a b^{2} c^{2}} - \frac {9 \, b \arcsin \left (c x\right ) \cos \left (\frac {a}{b}\right ) \operatorname {Ci}\left (\frac {3 \, a}{b} + 3 \, \arcsin \left (c x\right )\right )}{4 \, {\left (b^{3} c^{2} \arcsin \left (c x\right ) + a b^{2} c^{2}\right )}} + \frac {b \arcsin \left (c x\right ) \cos \left (\frac {a}{b}\right ) \operatorname {Ci}\left (\frac {a}{b} + \arcsin \left (c x\right )\right )}{4 \, {\left (b^{3} c^{2} \arcsin \left (c x\right ) + a b^{2} c^{2}\right )}} - \frac {3 \, b \arcsin \left (c x\right ) \sin \left (\frac {a}{b}\right ) \operatorname {Si}\left (\frac {3 \, a}{b} + 3 \, \arcsin \left (c x\right )\right )}{4 \, {\left (b^{3} c^{2} \arcsin \left (c x\right ) + a b^{2} c^{2}\right )}} + \frac {b \arcsin \left (c x\right ) \sin \left (\frac {a}{b}\right ) \operatorname {Si}\left (\frac {a}{b} + \arcsin \left (c x\right )\right )}{4 \, {\left (b^{3} c^{2} \arcsin \left (c x\right ) + a b^{2} c^{2}\right )}} - \frac {9 \, a \cos \left (\frac {a}{b}\right ) \operatorname {Ci}\left (\frac {3 \, a}{b} + 3 \, \arcsin \left (c x\right )\right )}{4 \, {\left (b^{3} c^{2} \arcsin \left (c x\right ) + a b^{2} c^{2}\right )}} + \frac {a \cos \left (\frac {a}{b}\right ) \operatorname {Ci}\left (\frac {a}{b} + \arcsin \left (c x\right )\right )}{4 \, {\left (b^{3} c^{2} \arcsin \left (c x\right ) + a b^{2} c^{2}\right )}} - \frac {3 \, a \sin \left (\frac {a}{b}\right ) \operatorname {Si}\left (\frac {3 \, a}{b} + 3 \, \arcsin \left (c x\right )\right )}{4 \, {\left (b^{3} c^{2} \arcsin \left (c x\right ) + a b^{2} c^{2}\right )}} + \frac {a \sin \left (\frac {a}{b}\right ) \operatorname {Si}\left (\frac {a}{b} + \arcsin \left (c x\right )\right )}{4 \, {\left (b^{3} c^{2} \arcsin \left (c x\right ) + a b^{2} c^{2}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(-c^2*x^2+1)^(1/2)/(a+b*arcsin(c*x))^2,x, algorithm="giac")

[Out]

3*b*arcsin(c*x)*cos(a/b)^3*cos_integral(3*a/b + 3*arcsin(c*x))/(b^3*c^2*arcsin(c*x) + a*b^2*c^2) + 3*b*arcsin(
c*x)*cos(a/b)^2*sin(a/b)*sin_integral(3*a/b + 3*arcsin(c*x))/(b^3*c^2*arcsin(c*x) + a*b^2*c^2) + 3*a*cos(a/b)^
3*cos_integral(3*a/b + 3*arcsin(c*x))/(b^3*c^2*arcsin(c*x) + a*b^2*c^2) + 3*a*cos(a/b)^2*sin(a/b)*sin_integral
(3*a/b + 3*arcsin(c*x))/(b^3*c^2*arcsin(c*x) + a*b^2*c^2) + (c^2*x^2 - 1)*b*c*x/(b^3*c^2*arcsin(c*x) + a*b^2*c
^2) - 9/4*b*arcsin(c*x)*cos(a/b)*cos_integral(3*a/b + 3*arcsin(c*x))/(b^3*c^2*arcsin(c*x) + a*b^2*c^2) + 1/4*b
*arcsin(c*x)*cos(a/b)*cos_integral(a/b + arcsin(c*x))/(b^3*c^2*arcsin(c*x) + a*b^2*c^2) - 3/4*b*arcsin(c*x)*si
n(a/b)*sin_integral(3*a/b + 3*arcsin(c*x))/(b^3*c^2*arcsin(c*x) + a*b^2*c^2) + 1/4*b*arcsin(c*x)*sin(a/b)*sin_
integral(a/b + arcsin(c*x))/(b^3*c^2*arcsin(c*x) + a*b^2*c^2) - 9/4*a*cos(a/b)*cos_integral(3*a/b + 3*arcsin(c
*x))/(b^3*c^2*arcsin(c*x) + a*b^2*c^2) + 1/4*a*cos(a/b)*cos_integral(a/b + arcsin(c*x))/(b^3*c^2*arcsin(c*x) +
 a*b^2*c^2) - 3/4*a*sin(a/b)*sin_integral(3*a/b + 3*arcsin(c*x))/(b^3*c^2*arcsin(c*x) + a*b^2*c^2) + 1/4*a*sin
(a/b)*sin_integral(a/b + arcsin(c*x))/(b^3*c^2*arcsin(c*x) + a*b^2*c^2)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {x\,\sqrt {1-c^2\,x^2}}{{\left (a+b\,\mathrm {asin}\left (c\,x\right )\right )}^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x*(1 - c^2*x^2)^(1/2))/(a + b*asin(c*x))^2,x)

[Out]

int((x*(1 - c^2*x^2)^(1/2))/(a + b*asin(c*x))^2, x)

________________________________________________________________________________________